
Advanced PixInsight
PixelMath Operations

David Ault

Why use PixelMath

• PixelMath is a very powerful tool that gives you access to all sorts of
features that otherwise would require javascripts, plug-in development
(PCL) or standalone programs

• I use it regularly for:
• Blending images with various functions (averaging, max, min, etc.)
• Hot pixel removal
• Altering or creating masks
• Testing calibration data
• Linear gradient based clipping or merging
• Noise reduction
• Drawing lines, circles or other geometry on an image
• Removing unwanted artifacts (star halos, etc.)

Syntax

• Symbols
• These are the equivalent of variables in programming languages
• For every assignment made in the expression space there must be a corresponding symbol
• Symbols can also be assigned values but only constants. This is the equivalent of initializing

variables.
• There is a built in symbol, $T, which is used to reference the active or new instance view (T stands

for target)
• Symbols need to be separated by commas

• Expressions
• This is where all the math is done
• All sorts of functions are available from, log to sine to image specific functions like biweight

midvariance
• The PixelMath engine can handle parenthetical equations
• Symbols are available for most functions: addition, subtraction, multiplication, powers.
• Expressions are separated by semi-colons with the result from the last expression returned as the

pixel value

How it works

• PixelMath runs in a big loop over each pixel in the active view

• For example, the expression 0.5 * $T will multiply every pixel in the
target view by 0.5 reducing the brightness by half

• There are functions available for determining where you are in the
image loop like x() & y() which can be used for targeting location
based variations

• There are also functions that are non loop based like mean(),
median(), bwmv(). These operate on an entire image and return a
single value result. Some of these functions, like mean(), can also
operate on a list of values.

The Expression Editor

• You can do a lot of math with the base
PixelMath form but if you want to do
more complex functions spanning
multiple equations the Expression
Editor is very useful

• You get quick access to Images,
Symbols, Function, etc. which can be
added to your expression by double
clicking on them

• You can also check the syntax of your
expressions without running it on the
entire image

• There is also syntax highlighting
making it easier to read the
expressions

Examples

• Image Blending
• Weighted linear blend (also called alpha blend or weighted averaging)
• Photoshop equivalents
• Star mask combination
• Synthetic channel generation

• Rendering
• Inserting lines and circles
• Cross-sections

• Hot pixel removal / noise reduction

• Star Halo Removal

• Manual calibration evaluation

Reference

Image Blending

• Alpha Blend

RGB/K: a*Image1 + (1-a)*Image2

or

RGB/K: 0.4*R + 0.3*G + 0.3*B

Symbols: a=0.5

• Synthetic Green

G: iif(B>0.5, 1-(1-R*(1-(B-0.5))), R*(B+0.5))

G: tg = 0.1*R + 0.9*B;

a*tg + (1-a)*min(tg, (R+B)/2)

Symbols: tg, a=0.5

• Star Mask Combination

RGB/K: max(star_mask, star_mask1, star_mask2)

Photoshop blending modes

• Normal
a*top + (1-a)*bot

• Multiply
a*top*bot + (1-a)*bot

• Screen
a*(1-(1-top)*(1-bot)) + (1-a)*bot

• Overlay
a*iif(bot<0.5, 2*bot*top, 1-2*(1-
top)*(1-bot)) + (1-a)*bot

• Darken
a*min(top, bot) + (1-a)*bot

• Lighten
a*max(top, bot) + (1-a)*bot

• Addition
a*(top + bot) + (1-a)*bot

• Subtraction
a*(top - bot) + (1-a)*bot

• Division
a*(top / bot) + (1-a)*bot

The a and a-1 portions of the equations are the alpha blend. This equates to the opacity slider in Photoshop
except it has a range of 0 to 1 instead of 0 to 100.

More Photoshop blending modes

• Linear Burn
a*(top+bot-1) + (1-a)*bot

• Color Burn
a*(1-(1-top)/bot) + (1-a)*bot

• Color Dodge
a*(top/(1-bot)) + (1-a)*bot

• Soft Light
a*iif(bot>0.5, 1-(1-top)*(1-(bot-
0.5)), top*(bot+0.5)) + (1-a)*bot

• Hard Light
a*iif(bot>0.5, 1-((1-top)*(1-2*(bot-
0.5))), 2*top*bot) + (1-a)*bot

• Exclusion
a*(0.5-2*(top-0.5)*(bot-0.5)) + (1-
a)*bot

Rendering

• Simple Circle

RGB/K: r = sqrt((x()-cx)^2 + (y()-cy)^2); iif(abs(tr-r)<0.5, 1, $T)

Symbols: cx=500, cy=500, tr=400, r

• Horizontal Line

RGB/K: iif(x()==xloc, 1, $T)

Symbols: xloc=685

• Aliased Circle

RGB/K: r = rdist(cx, cy); a = abs(tr-r)/(w/2); iif(a<1, a*$T+(1-a), $T)

Symbols: cx=1700, cy=1200, tr=300, w=5, r, a

• Aliased Line

RGB/K r = d2line(x1, y1, x2, y2); a = (r/(w/2))^0.5; iif(a<1, a*$T+(1-a), $T)

Symbols: x1=332, y1=788, x2=1472, y2=1112, tr=300, w=5, r, a

Rendering

• Green Tick Mark

R: iif(((x()>(cx+xo)) && (x()<(cx+xo+xl)) && (y()==cy)) || ((y()>(cy+yo)) && (y()<(cy+yo+yl)) && (x()==cx)), 0, $T)

G: iif(((x()>(cx+xo)) && (x()<(cx+xo+xl)) && (y()==cy)) || ((y()>(cy+yo)) && (y()<(cy+yo+yl)) && (x()==cx)), 1, $T)

B: iif(((x()>(cx+xo)) && (x()<(cx+xo+xl)) && (y()==cy)) || ((y()>(cy+yo)) && (y()<(cy+yo+yl)) && (x()==cx)), 0, $T)

Symbols: cx=345, cy=322, xo=15, yo=15, xl=30, yl=30

• Line Segment

RGB/K: d = d2seg(llx, lly, urx, ury); a = 1 - d/(lw/2); iif(d<(lw/2), a + (1-a)*$T, $T)

Symbols: llx=30, lly=356, urx=965, ury=179, lw=5, d, a

• Highlight Box in Yellow

R: $T[0]

G: $T[1]

B: iif(x()>llx && x()<urx && y()>lly && y()<ury, 0, $T[2])

Symbols: llx=32, lly=374, urx=723, ury=403

Cross Section analysis

• Cross-section variation (two pass)

RGB/K: pixel($T, x(), 0.5*h($T))

RGB/K: iif(((1-$T)*h($T))>y(), 0, $T)

or

RGB/K: d = abs(((1-CIEL($T))*h($T))-y());

iif(d>r, 0, r-d) where r=3

Hot Pixel Removal

• Symbols

f=9.0, w, h, x0, x1, x2, y0, y1, y2, p00, p01, p02, p10, p11, p12,
p20, p21, p22, value, sd

• RGB/K

w = width($T)-1;

h = height($T)-1;

x1 = x();

y1 = y();

x0 = iif(x1<1, 0, x1 - 1);

y0 = iif(y1<1, 0, y1 - 1);

x2 = iif(x1>w, w, x1+1);

y2 = iif(y1>h, h, y1+1);

p00 = pixel($T, x0, y0);

p01 = pixel($T, x0, y1);

p02 = pixel($T, x0, y2);

p10 = pixel($T, x1, y0);

• RGB/K continued

p11 = pixel($T, x1, y1);

p12 = pixel($T, x1, y2);

p20 = pixel($T, x2, y0);

p21 = pixel($T, x2, y1);

p22 = pixel($T, x2, y2);

value = med(p00, p01, p02, p10, p12, p20, p21, p22);

sd = sqrt(bwmv(p00, p01, p02, p10, p12, p20, p21, p22));

iif(p11>(value+(f*sd)), value, iif(p11<(value-(f*sd)), value,
p11))

• I found biweight midvariance to be more robust for
such a small set of pixels compared to standard
deviation

Removing Purple Stars

• Magenta Star Reduction
R: $T[0]

G: iif(min($T[0],$T[2])>$T[1],min($T[0],$T[2]),$T[1])

B: $T[2]

• In order to work on just stars this needs to be combined with a good
star mask.

Calibration Math

• Bias and flats only, assuming flats have been calibrated w/ dark flat or bias frames
calibrated light = (light - bias) * mean(flat) / max(0.00002, flat)

• Bias, scaled darks and flats, assuming flats have been calibrated w/ dark flats or bias
frames

calibrated light = ((light - bias) - k*(dark - bias)) * mean(flat) / max(0.00002, flat)

• Dark and flats only, assuming flats have been calibrated w/ dark flats or bias frames
calibrated light = (light - dark) * mean(flat) / max(0.00002, flat)

• Bias and Flats Only, with uncalibrated flats
calibrated light = (light - bias) * (mean(flat) - mean(bias)) / (max(0.00002, flat-bias)

• Bias, scaled darks and flats, with uncalibrated masters
calibrated light = ((light - bias) - k*(dark -bias)) * (mean(flat) - mean(bias)) / (max(0.00002, flat-bias)

• In most cases bias and dark flats are interchangeable, however if your flat frames are
very long and your sensor has high dark current then dark flats will work better

Resources

• http://pixinsight.com.ar/en/

• http://pixinsight.com/forum/index.php?board=11.0

• http://en.wikipedia.org/wiki/Blend_modes

• http://harrysastroshed.com/pixinsight/pixinsight%20video%20html/P
ixinsighthome.html

• http://pixinsight.com/tutorials/master-frames/index.html

• Handbook of CCD Astronomy – Howell

• Lessons from the Masters – Gendler et al.

http://pixinsight.com.ar/
http://pixinsight.com/forum/index.php?board=11.0
http://en.wikipedia.org/wiki/Blend_modes
http://harrysastroshed.com/pixinsight/pixinsight video html/Pixinsighthome.html
http://pixinsight.com/tutorials/master-frames/index.html

